Review Article

Psychometric Properties of Smartphone Addiction Inventory (SPAI) in Russian Context

Almira R. Bayanova 1 * , Alexey A. Chistyakov 2 , Maria O. Timofeeva 3 , Vladimir V. Nasonkin 4 , Tatiana I. Shulga 5 , Vitaly F. Vasyukov 6 7
More Detail
1 Kazan (Volga Region) Federal University, Kazan, Russia2 The State University of Management, Moscow, Russia3 I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia4 Peoples’ Friendship University of Russia (RUDN-University), Moscow, Russia5 Moscow State Regional University, Moscow, Russia6 Moscow State Institute of International Relations (MGIMO University), Moscow, Russia7 Orlovsky Law Institute of the Ministry of Internal Affairs of the Russian Federation named after V. V. Lukyanov, Orel, Russia* Corresponding Author
Contemporary Educational Technology, 14(1), January 2022, ep342, https://doi.org/10.30935/cedtech/11478
Published: 03 January 2022
OPEN ACCESS   2495 Views   1244 Downloads
Download Full Text (PDF)

ABSTRACT

Smartphones facilitate communication, education, information, and entertainment through a diverse array of mobile applications. Excessive smartphone use has become a significant societal issue. The research community has explored both the positive and negative consequences of mobile phone use. The phrase “problematic smartphone use” refers to an excessive pattern of smartphone use that may have negative consequences. Smartphone addiction may present with symptoms that are unique from Internet addiction. Severe sadness, anxiety, and tension are all associated with problematic smartphone use. Numerous negative consequences are discussed, including mental health problems, diminished physical fitness, and poor academic achievement. According to the findings of the literature analysis, there is no inventory that evaluates smartphone addiction in the context of Russia. The goal of this study is to examine the psychometric characteristics of the smartphone addiction inventory (SPAI) in a Russian context. Several Russian Federation universities performed the study during the autumn semester of the 2020-2021 academic year. To enhance the inventory, Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) were utilized on 209 students. As a result, research on the validity and reliability of the Smartphone Addiction Inventory were done in the Russian setting. The research revealed a brief inventory of 14 items and three factors (functional impairment, anxiety, and compulsive behavior).

CITATION (APA)

Bayanova, A. R., Chistyakov, A. A., Timofeeva, M. O., Nasonkin, V. V., Shulga, T. I., & Vasyukov, V. F. (2022). Psychometric Properties of Smartphone Addiction Inventory (SPAI) in Russian Context. Contemporary Educational Technology, 14(1), ep342. https://doi.org/10.30935/cedtech/11478

REFERENCES

  1. Agarwal, V., & Kar, S. K. (2015). Technology addiction in adolescents. Journal of Indian Association for Child and Adolescent Mental Health, 11(3), 170-174.
  2. Akhmadieva, R. S., Mikhaylovsky, M. N., Simonova, M. M., Nizamutdinova, S. M., Prokopyev, A. I., & Ostanina, S. S. (2021). Public relations in organizations in sportsman students view: Development of management tools or healthy and friendly relations formation. Journal of Human Sport and Exercise, 16(3proc), 1272-1279. https://doi.org/10.14198/jhse.2021.16.Proc3.43
  3. Anstey Watkins, J. O. T., Goudge, J., Gómez-Olivé, F. X., & Griffiths, F. (2018). Mobile phone use among patients and health workers to enhance primary healthcare: A qualitative study in rural South Africa. Social Science and Medicine, 198, 139-147. https://doi.org/10.1016/j.socscimed.2018.01.011
  4. Arrivillaga, C., Rey, L., & Extremera, N. (2020). Adolescents’ problematic internet and smartphone use is related to suicide ideation: Does emotional intelligence make a difference? Computers in Human Behavior, 110, 106375. https://doi.org/10.1016/j.chb.2020.106375
  5. ASAM. (2019). ASAM definition of addiction. https://www.asam.org/Quality-Science/definition-of-addiction
  6. Awofala, A. O. (2020). Investigating nomophobia as a predictor of smartphone addiction among Nigerian pre-service mathematics teachers. Indonesian Journal of Informatics Education, 4(2), 42. https://doi.org/10.20961/ijie.v4i2.40021
  7. Bauer, M., Glenn, T., Geddes, J., Gitlin, M., Grof, P., Kessing, L. V., Monteith, S., Faurholt-Jepsen, M., Severus, E., & Whybrow, P. C. (2020). Smartphones in mental health: A critical review of background issues, current status and future concerns. International Journal of Bipolar Disorders, 8(1), 1-19. https://doi.org/10.1186/s40345-019-0164-x
  8. Billieux, J., Maurage, P., Lopez-Fernandez, O., Kuss, D. J., & Griffiths, M. D. (2015). Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Current Addiction Reports, 2(2), 156-162. https://doi.org/10.1007/s40429-015-0054-y
  9. Busch, P. A., & McCarthy, S. (2021). Antecedents and consequences of problematic smartphone use: A systematic literature review of an emerging research area. Computers in Human Behavior, 114, 106414. https://doi.org/10.1016/j.chb.2020.106414
  10. Cha, S. S., & Seo, B. K. (2018). Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychology Open, 5(1), 1-15. https://doi.org/10.1177/2055102918755046
  11. Chen, J., Liang, Y., Mai, C., Zhong, X., & Qu, C. (2016). General deficit in inhibitory control of excessive smartphone users: Evidence from an event-related potential study. Frontiers in Psychology, 7, 1-9. https://doi.org/10.3389/fpsyg.2016.00511
  12. Chhabra, R., Verma, S., & Rama Krishna, C. (2019). Detecting aggressive driving behavior using mobile smartphone. In Proceedings of 2nd International Conference on Communication, Computing and Networking (pp. 513-521). https://doi.org/10.1007/978-981-13-1217-5_49
  13. Ching, S. M., Yee, A., Ramachandran, V., Lim, S. M. S., Sulaiman, W. A. W., Foo, Y. L., & Hoo, F. K. (2015). Validation of a Malay version of the smartphone addiction scale among medical students in Malaysia. PLoS ONE, 10(10), 1-11. https://doi.org/10.1371/journal.pone.0139337
  14. Choi, C., Hums, M. A., & Bum, C. H. (2018). Impact of the family environment on juvenile mental health: eSports online game addiction and delinquency. International Journal of Environmental Research and Public Health, 15(12), 2850. https://doi.org/10.3390/ijerph15122850
  15. Contractor, A. A., Weiss, N. H., Tull, M. T., & Elhai, J. D. (2017). PTSD’s relation with problematic smartphone use: Mediating role of impulsivity. Computers in Human Behavior, 75, 177-183. https://doi.org/10.1016/j.chb.2017.05.018
  16. Deng, M., Wang, S., Guan, W., & Wang, Y. (2017). The development and initial validation of a questionnaire of inclusive teachers’ competency for meeting special educational needs in regular classrooms in China. International Journal of Inclusive Education, 21(4), 416-427. https://doi.org/10.1080/13603116.2016.1197326
  17. De-Sola, J., Talledo, H., Rubio, G., & de Fonseca, F. R. (2017). Development of a mobile phone addiction craving scale and its validation in a Spanish adult population. Frontiers in Psychiatry, 8, 90. https://doi.org/10.3389/fpsyt.2017.00090
  18. Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155-174. https://doi.org/10.1037//1082-989x.5.2.155
  19. Elhai, J. D., Dvorak, R. D., Levine, J. C., & Hall, B. J. (2017). Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. Journal of Affective Disorders, 207, 251-259. https://doi.org/10.1016/j.jad.2016.08.030
  20. Felisoni, D. D., & Godoi, A. S. (2018). Cell phone usage and academic performance: An experiment. Computers and Education, 117, 175-187. https://doi.org/10.1016/j.compedu.2017.10.006
  21. Fjeldsoe, B. S., Marshall, A. L., & Miller, Y. D. (2009). Behavior change interventions delivered by mobile telephone short-message service. American Journal of Preventive Medicine, 36(2), 165-173. https://doi.org/10.1016/j.amepre.2008.09.040
  22. Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. McGraw-Hill.
  23. Griffiths, M. (2005). A “components” model of addiction within a biopsychosocial framework. Journal of Substance Use, 10(4), 191-197. https://doi.org/10.1080/14659890500114359
  24. Gutiérrez, J. D. S., de Fonseca, F. R., & Rubio, G. (2016). Cell-phone addiction: A review. Frontiers in Psychiatry, 7, 175. https://doi.org/10.3389/fpsyt.2016.00175
  25. Hair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Pearson Education, Inc.
  26. Harris, B., Regan, T., Schueler, J., & Fields, S. A. (2020). Problematic mobile phone and smartphone use scales: A systematic review. Frontiers in Psychology, 11, 672. https://doi.org/10.3389/fpsyg.2020.00672
  27. Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191-205. https://doi.org/10.1177/1094428104263675
  28. Horvath, J., Mundinger, C., Schmitgen, M. M., Wolf, N. D., Sambataro, F., Hirjak, D., Kubera, K. M., Koenig, J., & Wolf, R. C. (2020). Structural and functional correlates of smartphone addiction. Addictive Behaviors, 105, 1-7. https://doi.org/10.1016/j.addbeh.2020.106334
  29. Huckins, J. F., da Silva, A. W., Wang, W., Hedlund, E., Rogers, C., Nepal, S. K., Wu, J., Obuchi, M., Murphy, E. I., Meyer, M. L., Wagner, D. D., Holtzheimer, P. E., & Campbell, A. T. (2020). Mental health and behavior of college students during the early phases of the COVID-19 pandemic: Longitudinal smartphone and ecological momentary assessment study. Journal of Medical Internet Research, 22(6), e20185. https://doi.org/10.2196/20185
  30. Jackson, D. L., Gillaspy, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14(1), 6-23. https://doi.org/10.1037/a0014694
  31. Kline, T. J. B. (2005). Psychological testing: A practical approach to design and evaluation. SAGE. https://doi.org/10.4135/9781483385693
  32. Lepp, A., Barkley, J. E., & Karpinski, A. C. (2014). The relationship between cell phone use, academic performance, anxiety, and satisfaction with life in college students. Computers in Human Behavior, 31(1), 343-350. https://doi.org/10.1016/j.chb.2013.10.049
  33. Lin, Y. H., Chang, L. R., Lee, Y. H., Tseng, H. W., Kuo, T. B. J., & Chen, S. H. (2014). Development and validation of the smartphone addiction inventory (SPAI). PLoS ONE, 9(6), e98312. https://doi.org/10.1371/journal.pone.0098312
  34. Lopez-Fernandez, O. (2017). Short version of the smartphone addiction scale adapted to Spanish and French: Towards a cross-cultural research in problematic mobile phone use. Addictive Behaviors, 64, 275-280. https://doi.org/10.1016/j.addbeh.2015.11.013
  35. Marcolino, M. S., Oliveira, J. A. Q., D’Agostino, M., Ribeiro, A. L., Alkmim, M. B. M., & Novillo-Ortiz, D. (2018). The impact of mhealth interventions: Systematic review of systematic reviews. JMIR MHealth and UHealth, 6(1), e23. https://doi.org/10.2196/mhealth.8873
  36. Mikhaylovsky, M. N., Lopatkova, I. V., Komarova, N. M., Rueva, E. O., Tereschuk, K. S., & Emelyanenkova, A. V. (2019). Cyberbulling as a new form of a threat: A physiological, psychological and medicinal aspects. Electronic Journal of General Medicine, 16(6), em161. https://doi.org/10.29333/ejgm/114268
  37. Mitchell, L., & Hussain, Z. (2018). Predictors of problematic smartphone use: An examination of the integrative pathways model and the role of age, gender, impulsiveness, excessive reassurance seeking, extraversion, and depression. Behavioral Sciences, 8(8), 74. https://doi.org/10.3390/bs8080074
  38. O’Dea, S. (2021). Number of smartphone users from 2016 to 2021. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
  39. Oviedo-Trespalacios, O., King, M., Haque, M. M., & Washington, S. (2017). Risk factors of mobile phone use while driving in Queensland: Prevalence, attitudes, crash risk perception, and task-management strategies. PLoS ONE, 12(9), e0183361. https://doi.org/10.1371/journal.pone.0183361
  40. Pavia, L., Cavani, P., Di Blasi, M., & Giordano, C. (2016). Smartphone addiction inventory (SPAI): Psychometric properties and confirmatory factor analysis. Computers in Human Behavior, 63, 170-178. https://doi.org/10.1016/j.chb.2016.05.039
  41. Rezaee, F., & Pedret, A. (2018). A critical review of Silicon Valley solutions for smartphone addiction. Ideology, 3(3), 189-196. http://digitaldetox.org
  42. Roberts, J. A., Pullig, C., & Manolis, C. (2015). I need my smartphone: A hierarchical model of personality and cell-phone addiction. Personality and Individual Differences, 79, 13-19. https://doi.org/10.1016/j.paid.2015.01.049
  43. Schumacker, R. E., & Lomax, R. G. (2004). A beginner´s guide to structural equation modeling (2nd Ed.). Lawrence Erlbaum Associates, Inc. https://doi.org/10.4324/9781410610904
  44. Stanislaus, S., Vinberg, M., Melbye, S., Frost, M., Busk, J., Bardram, J. E., Kessing, L. V., & Faurholt-Jepsen, M. (2020). Smartphone-based activity measurements in patients with newly diagnosed bipolar disorder, unaffected relatives and control individuals. International Journal of Bipolar Disorders, 8(1), 32. https://doi.org/10.1186/s40345-020-00195-0
  45. Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273-1296. https://doi.org/10.1007/s11165-016-9602-2
  46. The Jamovi Project. (2021). Jamovi ((Version 1.6)). https://www.jamovi.org/
  47. Thomée, S., Härenstam, A., & Hagberg, M. (2011). Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults - A prospective cohort study. BMC Public Health, 11, 66. https://doi.org/10.1186/1471-2458-11-66
  48. Vezzoli, M., Colombo, A., Marano, A., Zoccatelli, G., & Zogmaister, C. (2021). Test for mobile phone dependence: Psychometric properties and confirmatory factor analysis. Current Psychology. https://doi.org/10.1007/s12144-021-01449-5
  49. Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of Black Psychology, 44(3), 219-246. https://doi.org/10.1177/0095798418771807
  50. Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Journal of Emergency Primary Health Care, 8(3), 1-13. https://doi.org/10.33151/ajp.8.3.93
  51. Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis. State University of New York Press. https://doi.org/10.2307/1269132
  52. Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 79-94. https://doi.org/10.20982/tqmp.09.2.p079
  53. Young, K. (2009). Internet addiction: Diagnosis and treatment considerations. Journal of Contemporary Psychotherapy, 39(4), 241-246. https://doi.org/10.1007/s10879-009-9120-x
  54. Yu, C.-Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes [PhD thesis, University of California]. http://repositorio.utn.edu.ec/bitstream/123456789/1207/3/PG 175_Capitulo II.pdf