Research Article

Predicting the actual use of artificial intelligence features of Apple Vision Pro using PLS-SEM

Rana Saeed Al-Maroof 1 , Ragad M. Tawafak 2 , Waleed Mugahed Al-Rahmi 3 * , Khadijah Amru Alhashmi 4 , Ibrahim Yaussef Alyoussef 5
More Detail
1 Department of English Language & Linguistics, Al Buraimi University College, Al Buraimi, OMAN2 Department of Information Technology, Al Buraimi University College, Al Buraimi, OMAN3 Department of Management Information System, College of Business Administration, Dar Al Uloom University, Riyadh SAUDI ARABIA4 Department of Educational Policies, College of Education, Umm Al- Qura University, Mecca, SAUDI ARABIA5 Education Technology, Faculty of Education, King Faisal University, Al-Ahsa 31982, SAUDI ARABIA* Corresponding Author
Contemporary Educational Technology, 17(3), July 2025, ep580, https://doi.org/10.30935/cedtech/16208
Published Online: 27 March 2025, Published: 01 July 2025
OPEN ACCESS   2993 Views   1865 Downloads
Download Full Text (PDF)

ABSTRACT

Despite the spread of artificial intelligence (AI) tools and applications, the Apple Vision Pro (AVP) stands out for its innovative features compared to other types of wearable technology. Moreover, traditional glasses have been deficient in incorporating many AI innovations that could enhance user experiences and pose new challenges. In response to these innovative aspects, this study aims to develop a theoretical model by integrating constructs from the expectation confirmation model (ECM) (expectation confirmation and satisfaction [SAT]) and aspects from the Uses and Gratifications (U&G) theory. The perceived human likeness of AI mediates the model. This study focuses on the educational domain, aiming to assess how this technology enhances the academic environment and improves learning outcomes. The method used was a survey distributed among 134 participants from Al Buraimi University College, Oman, for two departments: English, linguistics, and information technology. The study consists of seven hypotheses to emphasize the conceptual model. The findings significantly impact predicting the actual use (AU) of AI features of AVP, indicating that users’ expectations and SAT play a pivotal role in technology adoption and are closely linked to the variable human likeness. Similarly, factors such as entertainment value, informativeness, and the lack of web irritations significantly influence technology adoption and are associated with the human likeness variable. However, Informativeness gratification failed to pass the proposal and showed a negative indicator for predicting the AU of AI. The implications drawn from these results suggest that educational institutions should tailor their courses and curricula to promote the effective use of AI.

CITATION (APA)

Al-Maroof, R. S., Tawafak, R. M., Al-Rahmi, W. M., Alhashmi, K. A., & Alyoussef, I. Y. (2025). Predicting the actual use of artificial intelligence features of Apple Vision Pro using PLS-SEM. Contemporary Educational Technology, 17(3), ep580. https://doi.org/10.30935/cedtech/16208

REFERENCES

  1. Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 373–383). Springer. https://doi.org/10.1007/978-3-030-49186-4_31
  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  3. Alfarsi, G. M., Jabbar, J., Tawafak, R. M., Iqbal, S., Alsidiri, A., Alsinani, M., & Sulaiman, H. (2020). Mobile application system supported BUC student’s services and learning. International Journal of Interactive Mobile Technologies, 14(9), 79–94. https://doi.org/10.3991/ijim.v14i09.12053
  4. Alfarsi, G. M., Tawafak, R. M., ElDow, A., Malik, S. I., Jabbar, J., Al Sideiri, A., & Mathew, R. (2021). The general view about artificial intelligence technology in the education domain. In Proceedings of the International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies (pp. 120–127). https://doi.org/10.5220/0010304501200127
  5. Al-Maroof, R. A. S., & Al-Emran, M. (2018). Students acceptance of Google Classroom: An exploratory study using PLS-SEM approach. International Journal of Emerging Technologies in Learning, 13(6), Article 112. https://doi.org/10.3991/ijet.v13i06.8275
  6. Al-Maroof, R. A. S., & Salloum, S. A. (2020). An integrated model of continuous intention to use Google Classroom. In M. Al-Emran, K. Shaalan, & A. Ella Hassanien (Eds.), Recent advances in intelligent systems and innovative applications (pp. 311–335). Springer. https://doi.org/10.1007/978-3-030-47411-9_18
  7. Al-Maroof, R. A. S., Alhumaid, K., Alshaafi, A., Akour, I., Bettayeb, A., Alfaisal, R., & Salloum, S. A. (2024). A comparative analysis of ChatGPT and Google in educational settings: Understanding the influence of mediators on learning platform adoption. In A. Al-Marzouqi, S. A. Salloum, M. Al-Saidat, A. Aburayya, & B. Gupta (Eds.), Artificial intelligence in education: The power and dangers of ChatGPT in the classroom. Studies in big data, vol 144 (pp. 365–386). Springer. https://doi.org/10.1007/978-3-031-52280-2_23
  8. Al-Maroof, R. A. S., Alnazzawi, N., Akour, I., Ayoubi, K., Alhumaid, K., Nasser, N., Alaraimi, S., Albkushi, A., Thabit, S., Alfaisal, R., Aburayya, A., & Salloum, S. A. (2022). Students’ perception towards using electronic feedback after the pandemic: Post-acceptance study. International Journal of Data and Network Science, 6(4), 1233–1248. https://doi.org/10.5267/j.ijdns.2022.6.010
  9. Almogren, A. S., Al-Rahmi, W. M., & Dahri, N. A. (2024). Exploring factors influencing the acceptance of ChatGPT in higher education: A bright education perspective. Heliyon, 10(11), Article e31887. https://doi.org/10.1016/j.heliyon.2024.e31887
  10. Al-Obaydi, L. H., Pikhart, M., & Tawafak, R. M. (2023). Online assessment in language teaching environment through essays, oral discussion, and multiple-choice questions. Computer-Assisted Language Learning Electronic Journal, 24(2), 175–197.
  11. Al-Rahmi, W. M., Al-Adwan, A. S., Al-Maatouk, Q., Othman, M. S., Alsaud, A. R., Almogren, A. S., & Al-Rahmi, A. M. (2023). Integrating communication and task-technology fit theories: The adoption of digital media in learning. Sustainability, 15(10), Article 8144. https://doi.org/10.3390/su15108144
  12. Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351–370. https://doi.org/10.2307/3250921
  13. Chen, Q., & Wells, W. D. (1999). Attitude toward the site. Journal of Advertising Research, 39(5), 27–38. https://doi.org/10.1037/t49047-000
  14. Comrey, A. L., & Lee, H. B. (2013). A first course in factor analysis. Psychology Press. https://doi.org/10.4324/9781315827506
  15. Dahri, N. A., Vighio, M. S., Alismaiel, O. A., & Al-Rahmi, W. M. (2022). Assessing the impact of mobile-based training on teachers’ achievement and usage attitude. International Journal of Interactive Mobile Technologies, 16(9), 107–129. https://doi.org/10.3991/ijim.v16i09.30519
  16. Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy, S., Shutaleva, A., & Soomro, R. B. (2024). Extended TAM-based acceptance of AI-powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study. Heliyon, 10(8), Article e29317. https://doi.org/10.1016/j.heliyon.2024.e29317
  17. Doll, W. J., Hendrickson, A., & Deng, X. (1998). Using Davis’s perceived usefulness and ease-of-use instruments for decision making: A confirmatory and multigroup invariance analysis. Decision Sciences, 29(4), 839–869. https://doi.org/10.1111/j.1540-5915.1998.tb00879.x
  18. Ducoffe, R. H. (1996). Advertising value and advertising on the web. Journal of Advertising Research, 36(5), 21–35.
  19. Ebadi, S., & Rahimi, R. (2024). A systematic review of technology-mediated feedback research: Insights and future directions. Journal of English Language Teaching and Learning, 16(34), 37–54. https://doi.org/10.22034/elt.2024.63638.2698
  20. Egger, J., Gsaxner, C., Chen, X., Bian, J., Kleesiek, J., & Puladi, B. (2023). Apple Vision Pro for healthcare: “The ultimate display”? -- Entering the wonderland of precision medicine. arXiv. https://doi.org/10.48550/arXiv.2308.04313
  21. Eighmey, J., & McCord, L. (1998). Adding value in the information age: Uses and gratifications of sites on the world wide web. Journal of Business Research, 41(3), 187–194. https://doi.org/10.1016/S0148-2963(97)00061-1
  22. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
  23. Gonzalez Nieto, L., Wallis, A., Clements, J., Miranda Sazo, M., Kahlke, C., Kon, T. M., & Robinson, T. L. (2023). Evaluation of computer vision systems and applications to estimate trunk cross-sectional area, flower cluster number, thinning efficacy and yield of apple. Horticulturae, 9(8), Article 880. https://doi.org/10.3390/horticulturae9080880
  24. Ismail, A., Idris, M. Y. I., Ayub, M. N., & Por, L. Y. (2018). Vision-based apple classification for smart manufacturing. Sensors, 18(12), Article 4353. https://doi.org/10.3390/s18124353
  25. Katawetawaraks, C., & Wang, C. (2011). Online shopper behavior: Influences of online shopping decision. Asian Journal of Business Research, 1(2). https://doi.org/10.14707/ajbr.110012
  26. Keelson, S. A., Bruce, E., Egala, S. B., Amoah, J., & Bashiru Jibril, A. (2024). Driving forces of social media and its impact on tourists’ destination decisions: A uses and gratification theory. Cogent Social Sciences, 10(1), Article 2318878. https://doi.org/10.1080/23311886.2024.2318878
  27. Kim, K. J., Park, E., Sundar, S. S., & Del Pobil, A. P. (2012). The effects of immersive tendency and need to belong on human-robot interaction. In Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction (pp. 207–208). ACM. https://doi.org/10.1145/2157689.2157758
  28. Kumar, K. A., & Natarajan, S. (2020). An extension of the expectation confirmation model (ECM) to study continuance behavior in using e-health services. Innovative Marketing, 16(2), Article 15. https://doi.org/10.21511/im.16(2).2020.02
  29. Lim, W. M. (2015). Antecedents and consequences of e-shopping: An integrated model. Internet Research, 25(2), 184–217. https://doi.org/10.1108/IntR-11-2013-0247
  30. Lim, W. M., & Ting, D. H. (2012). E-shopping: An analysis of the uses and gratifications theory. Modern Applied Science, 6(5), Article 48. https://doi.org/10.5539/mas.v6n5p48
  31. Lin, S. W., & Huang, C. D. (2024). Hooked on audio! Unveiling the secrets of podcast stickiness through social identity and uses and gratification theories. Technology in Society, 76, Article 102422. https://doi.org/10.1016/j.techsoc.2023.102422
  32. Luo, X. (2002). Uses and gratifications theory and e-consumer behaviors: A structural equation modeling study. Journal of Interactive Advertising, 2(2), 34–41. https://doi.org/10.1080/15252019.2002.10722060
  33. Malik, S. I., Mathew, R., Al-Sideiri, A., Jabbar, J., Al-Nuaimi, R., & Tawafak, R. M. (2022). Enhancing problem-solving skills of novice programmers in an introductory programming course. Computer Applications in Engineering Education, 30(1), 174–194. https://doi.org/10.1002/cae.22450
  34. Malik, S. I., Tawafak, R. M., & Shakir, M. (2021). Aligning and assessing teaching approaches with solo taxonomy in a computer programming course. International Journal of Information and Communication Technology Education, 17(4), 1–15. https://doi.org/10.4018/IJICTE.20211001.oa5
  35. Mun, Y. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350–363. https://doi.org/10.1016/j.im.2005.08.006
  36. Obeid, A., Ibrahim, R., & Fadhil, A. (2024). Extended model of expectation confirmation model to examine users’ continuous intention toward the utilization of e-learning platforms. IEEE Access, 12, 40752–40764. https://doi.org/10.1109/ACCESS.2024.3373190
  37. Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469. https://doi.org/10.2307/3150499
  38. Park, N., Jang, K., Cho, S., & Choi, J. (2021). Use of offensive language in human-artificial intelligence chatbot interaction: The effects of ethical ideology, social competence, and perceived human likeness. Computers in Human Behavior, 121, Article 106795. https://doi.org/10.1016/j.chb.2021.106795
  39. Pikhart, M., Al-Obaydi, L. H., & Tawafak, R. M. (2022). The implementation of critical pedagogy in digital second language acquisition in higher education: Age and gender differences. Computer-Assisted Language Learning Electronic Journal, 23(2), 56–75.
  40. Prasetya, F. H., Harnadi, B., Widiantoro, A. D., & Pamudji, A. K. (2022). Expectation-confirmation model (ECM) to see satisfaction and continued intention of e-learning (“cyber”). In Proceedings of the 6th International Conference on Information Technology (pp. 303–308). IEEE. https://doi.org/10.1109/InCIT56086.2022.10067619
  41. Rahi, S., Alghizzawi, M., & Ngah, A. H. (2023). Factors influence user’s intention to continue use of e-banking during COVID-19 pandemic: The nexus between self-determination and expectation confirmation model. EuroMed Journal of Business, 18(3), 380–396. https://doi.org/10.1108/EMJB-12-2021-0194
  42. Rehman, U., & Cao, S. (2016). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus Google Glass. IEEE Transactions on Human-Machine Systems, 47(1), 140–151. https://doi.org/10.1109/THMS.2016.2620106
  43. Rubin, A. M. (2009). Uses and gratifications. In R. L. Nabi, & M. B. Oliver (Eds.), The SAGE handbook of media processes and effects (pp. 147–159). SAGE.
  44. Ruijten, P. A. M., Midden, C. J. H., & Ham, J. (2015). Lonely and susceptible: The influence of social exclusion and gender on persuasion by an artificial agent. International Journal of Human-Computer Interaction, 31(11), 832–842. https://doi.org/10.1080/10447318.2015.1067480
  45. Santos, E., & Castillo, V. (2024). Apple Vision Pro: Comments in healthcare. SSRN. https://doi.org/10.2139/ssrn.4694196
  46. Tatnall, A. (2020). Editorial for EAIT issue 2, 2020. Education and Information Technologies, 25, 647–657. https://doi.org/10.1007/s10639-020-10135-1
  47. Tawafak, R. M., Al-Obaydi, L. H., & Pikhart, M. (2023a). Competency categorization and roles of online teachers from the perspective of university students. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1009000
  48. Tawafak, R. M., Al-Rahmi, W. M., Almogren, A. S., Al Adwan, M. N., Safori, A., Attar, R. W., & Habes, M. (2023b). Analysis of e-learning system use using combined TAM and ECT factors. Sustainability, 15(14), Article 11100. https://doi.org/10.3390/su151411100
  49. Tawafak, R. M., Alyoussef, I. Y., & Al-Rahmi, W. M. (2023c). Essential factors to improve student performance using an e-learning model: Review study. International Journal of Interactive Mobile Technologies, 17(3), 160–176. https://doi.org/10.3991/ijim.v17i03.35727
  50. Ullah, N., Al-Rahmi, W. M., Alblehai, F., Fernando, Y., Alharbi, Z. H., Zhanbayev, R., Al-Adwan, A. S., & Habes, M. (2024). Blockchain-powered grids: Paving the way for a sustainable and efficient future. Heliyon, 10(10), Article e31592. https://doi.org/10.1016/j.heliyon.2024.e31592
  51. Waisberg, E., Ong, J., Masalkhi, M., Zaman, N., Sarker, P., Lee, A. G., & Tavakkoli, A. (2024). Apple Vision Pro and why extended reality will revolutionize the future of medicine. Irish Journal of Medical Science (1971-), 193(1), 531–532. https://doi.org/10.1007/s11845-023-03437-z
  52. Walsh, G., & Yamin, M. (2005). Towards a conceptual model of consumer confusion. Advances in Consumer Research, 32(1), 143–150.
  53. Wu, R., Wang, G., & Yan, L. (2020). The effects of online store informativeness and entertainment on consumers’ approach behaviors: Empirical evidence from China. Asia Pacific Journal of Marketing and Logistics, 32(6), 1327–1342. https://doi.org/10.1108/APJML-03-2019-0182
  54. Yu, H. (2024). Why do people use Metaverse? A uses and gratification theory perspective. Telematics and Informatics, 89, Article 102110. https://doi.org/10.1016/j.tele.2024.102110