Review Article

Implications of Computational Thinking Knowledge Transfer for Developing Educational Interventions

Sandra Erika Gutiérrez-Núñez 1 , Aixchel Cordero-Hidalgo 1 , Javier Tarango 1 *
More Detail
1 Autonomous University of Chihuahua, MEXICO* Corresponding Author
Contemporary Educational Technology, 14(3), July 2022, ep367, https://doi.org/10.30935/cedtech/11810
Published: 26 February 2022
OPEN ACCESS   2371 Views   1378 Downloads
Download Full Text (PDF)

ABSTRACT

This article analyzes the way in which educators and researchers have pronounced themselves for incorporating computer programming in the K-12 curricula (basic and secondary education), recognizing its cognitive benefits in those who practice it, which can be useful in contexts other than computing, by influencing the development of higher order thinking skills and problem solving, both concepts integrated in the so-called computational thinking (CT). The proposal includes the vision of various authors, who conclude that the transfer of cognitive programming skills does not happen correctly given the prevalence of educational interventions designed under the belief that it occurs as an automatic and spontaneous process. The structure of the article is made up of three fundamental aspects: (1) historical account of the definition of knowledge transfer (KT), its main theoretical and classificatory taxonomies; (2) integration of existing definitions on CT and the way in which the formulation of various study plans in different countries has resulted; and (3) the investigation of different challenges and implications present in the CT, as well as recommendations for its improvement, taking as a reference the results of experiments carried out in different academic fields, proposed in order to strengthen both the KT as well as the CT.

CITATION (APA)

Gutiérrez-Núñez, S. E., Cordero-Hidalgo, A., & Tarango, J. (2022). Implications of Computational Thinking Knowledge Transfer for Developing Educational Interventions. Contemporary Educational Technology, 14(3), ep367. https://doi.org/10.30935/cedtech/11810

REFERENCES

  1. Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7), 832-835. https://doi.org/10.1093/comjnl/bxs074
  2. Alabau Gonzalvo, J., Solaz-Portoles, J. J., & Sanjosé López, V. (2020). Relación entre creencias sobre resolución de problemas, creencias epistemológicas, nivel académico, sexo y desempeño en resolución de problemas: un estudio en educación secundaria [Relationship between problem-solving beliefs, epistemological beliefs, academic level, gender, and problem-solving performance: a study in secondary education]. Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Teaching and Dissemination of Sciences], 17(1), 1-16. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i1.1102
  3. Alsalamah, A., & Callinan, C. (2021). Adaptation of Kirkpatrick’s four-level model of training criteria to evaluate training programmes for head teachers. Education Sciences, 11(3), 116. https://doi.org/10.3390/educsci11030116
  4. Ambrose, S. A., & Lovett, M. C. (2014). Prior knowledge is more than content: Skills and beliefs also impact learning. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.), Applying science of learning in education: Infusing psychological science into the curriculum (pp. 7-19). Society for the Teaching of Psychology.
  5. Anderson, M., & Beavis, A. (2018). Teaching for learning transfer: A literature review. Victorian Curriculum and Assessment Authority.
  6. Bacon, E., Williams, M. D., & Davies, G. H. (2021). On the combinatory nature of knowledge transfer conditions: A mixed method assessment. Information Systems Frontiers.https://doi.org/10.1007/s10796-021-10127-7
  7. Baker, L., Ng, S., & Friesen F. (2019). Paradigms of education: An online supplement. www.paradigmsofeducatio
  8. Barnett, S., Rindermann, H., Williams, W., & Ceci, S. (2020). Society and Intelligence. In R. Sternberg (Ed.), The Cambridge handbook of intelligence (pp. 964-987). Cambridge University Press. https://doi.org/10.1017/9781108770422.041
  9. Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48-54. https://doi.org/10.1145/1929887.1929905
  10. BBC-UK. (2015). KS3 Computer science: Introduction to computational thinking. https://www.bbc.co.uk/bitesize/subjects/zvc9q6f
  11. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardh, K. (2016a). Developing computational thinking in compulsory education: Implications for policy and practice. European Commission.
  12. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016b). Exploring the field of computational thinking as a 21st century skill (pp. 4725-4733). In Proceedings of the EDULEARN16, Barcelona, España. https://doi.org/10.21125/edulearn.2016.2136
  13. Bonney, E., Jelsma, L. D., Ferguson, G. D., & Smits-Engelsman, B. (2017). Learning better by repetition or variation? Is transfer at odds with task specific training? Plos One, 12(3), e0174214. https://doi.org/10.1371/journal.pone.0174214
  14. Cárdenas Peralta, M. C. (2018). Pensamiento computacional: Educación básica. Marco referencial (@prende 2.0) [Computational thinking: Basic education. Referential framework (@prende 2.0)]. Gobierno de México. https://bit.ly/cardenasFramework
  15. Carretero Gómez, S., Vuorikari, R., & Punie, Y. (2017). DigComp 2.1: The digital competence framework for citizens with eight proficiency levels and examples of use. EUR scientific and technical research reports. Publications Office of the European Union.
  16. Chen, S., & Zhang, C. (2021). What happens to a black sheep? Exploring how multilevel leader-member exchange differentiation shapes the organizational altruism behaviors of low leader-member exchange minority. Group & Organization Management, 46(6), 1073-1105. https://doi.org/10.1177/1059601121998584
  17. Cruz Castro, L. M., Magana, A. J., Douglas, K. A., & Bouti, M. (2021). Analyzing students’ computational thinking practices in a first-year engineering course. IEEE Access, 9, 33041-33050. https://doi.org/10.1109/ACCESS.2021.3061277
  18. CSTA & ISTE. (2011). Operational definition of computational thinking for K-12 education. https://www.csteachers.org/page/about-csta-s-k-12-nbsp-standards
  19. Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020) Implications for educational practice of the science of learning and development. Applied Developmental Science, 24(2), 97-140. https://doi.org/10.1080/10888669.2018.1537791
  20. Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60, 33-39. https://doi.org/10.1145/2998438
  21. Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press. https://doi.org/10.7551/mitpress/11740.001.0001
  22. Egan, J. P. (2020). Beyond the afterglow: Effective transfer of learning through instructional design. Teaching and Learning Inquiry, 8(1), 173-186. https://doi.org/10.20343/teachlearninqu.8.1.12
  23. Ellington, J. E., Surface, E. A., Blume, B. D., & Wilson, M. A. (2015). Foreign language training transfer: Individual and contextual predictors of skill maintenance and generalization. Military Psychology, 27(1), 36-51. https://doi.org/10.1037/mil0000064
  24. Fundación Chile [Chile Foundation]. (2017). Pensamiento computacional [Computational thinking]. Gobierno de Chile, Ministerio de Educación [Ministry of Education]. https://fch.cl/noticia/25171
  25. Gordon, B., & Doyle, S. (2015). Teaching personal and social responsibility and transfer of learning: Opportunities and challenges for teachers and coaches. Journal of Teaching in Physical Education, 34, 152-161. https://doi.org/10.1123/jtpe.2013-0184
  26. Green, C., Molloy, O., & Duggan, J. (2022). An empirical study of the impact of systems thinking and simulation on sustainability education. Sustainability, 14(394), 1-30. https://doi.org/10.3390/su14010394
  27. Gysin, D., & Brovelli, D. (2021). Use of knowledge pieces and context features during the transfer process in physics tasks. International Journal of Science Education, 43(13), 2108-2126. https://doi.org/10.1080/09500693.2021.1952334
  28. ISTE. (2016). Standards for students. https://www.iste.org/standards
  29. ISTE. (2018). Computational thinking meets student learning: Extending the ISTE standards. International Society for Technology in Education. https://www.iste.org/standards/foreducators
  30. Jacob, S. R., & Warschauer, M. (2018). Computational thinking literacy. Journal of Computer Science Integration, 1(1), 1-25. https://doi.org/10.26716/jcsi.2018.01.1.1
  31. Kassab, K. (2021). An investigation of transfer of learning in an English-for-specific-academic writing course: Teaching for transfer. International Journal of Linguistics, Literature and Translation, 4(2), 172-184. https://doi.org/10.32996/ijllt
  32. Kluzer, S., & Pujol Priego, L. (2018). DigComp into action–get inspired, make it happen. In S. Carretero Gomez, Y. Punie, R. Vuorikari, M. Cabrera Giraldez, & W. O’Keefe (Eds.), JRC Science for Policy Report, EUR 29115 EN. Office of the European Union, Luxembourg. https://doi.org/10.2760/112945
  33. Law, N., Woo, D., De la Torre, J., & Wong, G. (2018). A global framework of reference on digital literacy skills for indicator 4.4.2. http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
  34. Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: Integrating computational thinking in K-12 science, technology, engineering, and mathematics education. Journal of Science Education and Technology, 29, 1-8. https://doi.org/10.1007/s10956-019-09803-w
  35. Li, Y., Schoenfeld, A. H., DiSessa, A. A., Graesser, A. C., Benson, L.C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3, 1-18. https://doi.org/10.1007/s41979-020-00030-2
  36. Lodi, M. (2020). Introducing computational thinking in K-12 education: Historical, epistemological, pedagogical, cognitive, and affective aspects. https://hal.inria.fr/tel-02981951/document
  37. Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012
  38. Macagno, F., & Apanta, C. R. (2019). The dimensions of argumentative texts and their assessment. Studia Paedagogica [Studies in Pedagogy], 24(4), 11-44. https://doi.org/10.5817/SP2019-4-1
  39. National Research Council (2010). Preparing teachers: Building evidence for sound policy. The National Academies Press.
  40. National Science Foundation (NSF). (2019). TEM + computing K-12 education (STEM+C). https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505006
  41. Ololube, N.P., Ajuru, I., James, P., & Makewa, L.N. (2015). Handbook of research on enhancing teacher education with advanced instructional technologies. Information Science Reference. https://doi.org/10.4018/978-1-4666-8162-0
  42. Ornelas-Gutiérrez, D., Cordero Arroyo, G., & Cano García, E. (2016). La transferencia de la formación del profesorado universitario: Aportaciones de la investigación reciente [The transfer of university teacher training: Contributions of recent research]. Perfiles Educativos [Educational Profiles], 38(154), 57-75. https://doi.org/10.22201/iisue.2448167e.154.57662
  43. Peng, M. Y.-P., Feng, Y., Zhao, X., & Chong, W. (2021). Use of knowledge transfer theory to improve learning outcomes of cognitive and non-cognitive skills of university students: Evidence from Taiwan. Frontiers in Psychology, 12, 1-12. https://doi.org/10.3389/fpsyg.2021.583722
  44. Polanco Padrón, N., Ferrer Planchart, S., & Fernández Reina, M. (2021). Aproximación a una definición de pensamiento computacional [Approach to a definition of computational thinking]. Revista Iberoamericana de Educación a Distancia [Ibero-American Journal of Distance Education], 24(1), 55-76.https://doi.org/10.5944/ried.24.1.27419
  45. Polizzi, G. (2020). Digital literacy and the national curriculum for England: Learning from how the experts engage with and evaluate online content. Computer & Education, 152, 1-13. https://doi.org/10.1016/j.compedu.2020.103859
  46. Rastle, K., Lally, C., Davis, M. H., & Taylor, J. S. H. (2021). The dramatic impact of explicit instruction on learning to read in a new writing system. Psychological Science, 32(4), 471-484. https://doi.org/10.1177/0956797620968790
  47. Ríos Félix, J. M., Zatarin Cabada, R., Barrón Estrada, M. L., & Favela Vera, J. (2020). An intelligent learning environment for computational thinking. Computación y Sistemas [Computing and Systems], 24(3), 1199-1210. https://doi.org/10.13053/cys-24-3-3480
  48. Román-González, M. (2016). Test de pensamiento computacional: Principios de diseño, validación de contenido y análisis de ítems [Computational thinking test: Design principles, content validation, and item analysis]. In M. A. Murga Menoya (Ed.), Perspectivas y avances de la investigación [Research prospects and advances] (pp. 279-302). UNED.
  49. Römgens, I., Scoupeb, R., & Beausaert, S. (2020). Unraveling the concept of employability, bringing together research on employability in higher education and the workplace. Studies in Higher Education, 45(12), 2588-2603. https://doi.org/10.1080/03075079.2019.1623770
  50. Roncoroni Osio, U., Lavín, E., & Bailón Maxi, J. (2020). Computational thinking: Digital literacy without computers. Icono 14 [Icon 14], 18(2), 379-405. https://doi.org/10.7195/ri14.v18i2.1570
  51. Sahaked, H., & Schechter, C. (2016). Source of systems thinking in school leadership. Journal of School Leadership, 26, 468-494. https://doi.org/10.1177/105268461602600304
  52. Saks, K., Ilves, H., & Noppel, A. (2021). The impact of procedural knowledge on the formation of declarative knowledge: How accomplishing activities designed for developing learning skills impacts teachers’ knowledge of learning skills. Education Sciences, 11(598), 1-15. https://doi.org/10.3390/educsci11100598
  53. Salehi, S., Wang, K. D., Toorawa, R., & Wieman, C. (2020). Can majoring in computer science improve general problem-solving skills? In Annual Conference on Innovation and Technology in Computer Science Education (pp. 156-161). https://doi.org/10.1145/3328778.3366808
  54. Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and how? Journal of Educational Computing Research, 3(2), 149-169. https://doi.org/10.2190/6F4Q-7861-QWA5-8PL1
  55. Sánchez-Vera, M. M. (2019). El pensamiento computacional en contextos educativos: Una aproximación desde la tecnología educativa [Computational thinking in educational contexts: An approach from educational technology]. Research in Education and Learning Innovation Archives, 23, 24-39. https://doi.org./10.7203/realia.23.15635
  56. Scherer, R. (2016). Learning from the past—The need for empirical evidence on the transfer effects of computer programming skills. Frontiers in Psychology, 7, 1-4. https://doi.org/10.3389/fpsyg.2016.01390
  57. Scherer, R., Siddiq, F., & Sánchez-Viveros, B. (2019). The cognitive benefits of learning computer programming: A meta-analysis of transfer effects. Journal of Educational Psychology, 111(5), 764-792. https://doi.org/10.1037/edu0000314
  58. Seufert, S., Guggemos, J., & Sailes, M. (2021). Technology-related knowledge, skills, and attitudes of pre- and in-service teachers: The current situation and emerging trends. Computers in Human Behavior, 115, 1-11. https://doi.org/10.1016/j.chb.2020.106552
  59. Shafie, S., Majid, F. A., Damio, S. M., & Hoon, T. S. (2020). Evaluation on the face and content validity of a soft skills transfer of training instrument. International Journal of Academic Research in Business and Social Sciences, 10(10), 1054-1065. https://doi.org/10.6007/IJARBSS/v10-i10/8267
  60. Shin, M., & Bolkan, S. (2021) Intellectually stimulating students’ intrinsic motivation: The mediating influence of student engagement, self-efficacy, and student academic support. Communication Education, 70(2), 146-164. https://doi.org/10.1080/03634523.2020.1828959
  61. Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142158. https://doi.org/10.1016/j.edurev.2017.09.003
  62. Solaz-Portolés, J. J., & Sanjosé, V. (2008). Types of knowledge and their relations to problem solving in science: Directions for practice. Educational Sciences Journal, 6, 105-112. http://bit.ly/TypesofKnowledge
  63. Sonhaji, I., Wijayati, D. T., Soedjarwo, S., Supardam, D., Setiyo, S., & Muharlisiani, S. T. (2020). Factors analysis that affecting “knowledge sharing” in t-vet instructors at Aviation Polytechnic of Surabaya. Talent Development & Excellence, 12(1), 5317-5328.
  64. Sotiriou, S. A., Lazourdis, A., & Bogner, F. X. (2020). Inquiry-based learning and e-learning: How to serve high and low achievers. Smart Learning Environments, 7(29), 1-15. https://doi.org/10.1186/s40561-020-00130-x
  65. Tarn, D., & Yen, D. (2020). Task characteristics and knowledge management performance: Model development and scale construction. Knowledge Management Research & Practice. https://doi.org/10.1080/14778238.2020.1785346
  66. Valverde-Berrocoso, J., Fernández-Sánchez, M. R., & Garrido-Arroyo, M. C. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje [Computational thinking and new learning ecologies]. Revista de Educación a Distancia [Distance Education Magazine], 46(3). https://doi.org/10.6018/red/46/3
  67. van Peppen, L. M., Verkoeijen, P. P. J. L., Heijltjes, A. E. G., Janssen, E. M., & van Gog, T. (2021). Enhancing students’ critical thinking skills: Is comparing correct and erroneous examples beneficial? Instructional Science (preprint). https://doi.org/10.1007/s11251-021-09559-0
  68. Vidal, P., De Moura, J., Novo, J., & Ortega M. (2021). Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19. Expert Systems with Applications, 173, 114677. https://doi.org/10.1016/j.eswa.2021.114677
  69. Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20, 715-728. https://doi.org/10.1007/s10639-015-9412-6
  70. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
  71. Wenzelburger, E. (2020). La transferencia en el aprendizaje [Transfer in learning]. http://publicaciones.anuies.mx/acervo/revsup/res061/art4.htm
  72. When, U., & Montalvo, C. (2018). Knowledge transfer dynamics and innovation: Behaviour, interactions and aggregated outcomes. Journal of Cleaner Production, 171, S56-S68. https://doi.org/10.1016/j.jclepro.2016.09.198
  73. Wing, J. M. (2011). Computational thinking. In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2011) (pp. 33-35). IEEE. https://doi.org/10.1109/VLHCC.2011.6070404
  74. Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital [Computational thinking: A new digital literacy]. Revista de Educación a Distancia [Distance Education Magazine], 46, 1-47. https://doi.org/10.6018/red/45/4
  75. Zohar, A., & Barzilai, S. (2015). Metacognition and teaching higher order thinking (HOT) in science education: Students’ thinking, teachers’ knowledge, and instructional practices. In R. Wegerif, L. Li, & J. Kaufman (Eds.), Routledge international handbook of research on teaching thinking (pp. 229-242). Routledge.
  76. Zouhri, B., & Rateau, P. (2015). Social representation and social identity in the black sheep effect. European Journal of Social Psychology, 45, 669-677. https://doi.org/10.1002/ejsp.2138