Review Article
Implications of Computational Thinking Knowledge Transfer for Developing Educational Interventions
More Detail
1 Autonomous University of Chihuahua, MEXICO* Corresponding Author
Contemporary Educational Technology, 14(3), July 2022, ep367, https://doi.org/10.30935/cedtech/11810
Published: 26 February 2022
OPEN ACCESS 2371 Views 1378 Downloads
ABSTRACT
This article analyzes the way in which educators and researchers have pronounced themselves for incorporating computer programming in the K-12 curricula (basic and secondary education), recognizing its cognitive benefits in those who practice it, which can be useful in contexts other than computing, by influencing the development of higher order thinking skills and problem solving, both concepts integrated in the so-called computational thinking (CT). The proposal includes the vision of various authors, who conclude that the transfer of cognitive programming skills does not happen correctly given the prevalence of educational interventions designed under the belief that it occurs as an automatic and spontaneous process. The structure of the article is made up of three fundamental aspects: (1) historical account of the definition of knowledge transfer (KT), its main theoretical and classificatory taxonomies; (2) integration of existing definitions on CT and the way in which the formulation of various study plans in different countries has resulted; and (3) the investigation of different challenges and implications present in the CT, as well as recommendations for its improvement, taking as a reference the results of experiments carried out in different academic fields, proposed in order to strengthen both the KT as well as the CT.
CITATION (APA)
Gutiérrez-Núñez, S. E., Cordero-Hidalgo, A., & Tarango, J. (2022). Implications of Computational Thinking Knowledge Transfer for Developing Educational Interventions. Contemporary Educational Technology, 14(3), ep367. https://doi.org/10.30935/cedtech/11810
REFERENCES
- Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7), 832-835. https://doi.org/10.1093/comjnl/bxs074
- Alabau Gonzalvo, J., Solaz-Portoles, J. J., & Sanjosé López, V. (2020). Relación entre creencias sobre resolución de problemas, creencias epistemológicas, nivel académico, sexo y desempeño en resolución de problemas: un estudio en educación secundaria [Relationship between problem-solving beliefs, epistemological beliefs, academic level, gender, and problem-solving performance: a study in secondary education]. Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Teaching and Dissemination of Sciences], 17(1), 1-16. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i1.1102
- Alsalamah, A., & Callinan, C. (2021). Adaptation of Kirkpatrick’s four-level model of training criteria to evaluate training programmes for head teachers. Education Sciences, 11(3), 116. https://doi.org/10.3390/educsci11030116
- Ambrose, S. A., & Lovett, M. C. (2014). Prior knowledge is more than content: Skills and beliefs also impact learning. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.), Applying science of learning in education: Infusing psychological science into the curriculum (pp. 7-19). Society for the Teaching of Psychology.
- Anderson, M., & Beavis, A. (2018). Teaching for learning transfer: A literature review. Victorian Curriculum and Assessment Authority.
- Bacon, E., Williams, M. D., & Davies, G. H. (2021). On the combinatory nature of knowledge transfer conditions: A mixed method assessment. Information Systems Frontiers.https://doi.org/10.1007/s10796-021-10127-7
- Baker, L., Ng, S., & Friesen F. (2019). Paradigms of education: An online supplement. www.paradigmsofeducatio
- Barnett, S., Rindermann, H., Williams, W., & Ceci, S. (2020). Society and Intelligence. In R. Sternberg (Ed.), The Cambridge handbook of intelligence (pp. 964-987). Cambridge University Press. https://doi.org/10.1017/9781108770422.041
- Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48-54. https://doi.org/10.1145/1929887.1929905
- BBC-UK. (2015). KS3 Computer science: Introduction to computational thinking. https://www.bbc.co.uk/bitesize/subjects/zvc9q6f
- Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardh, K. (2016a). Developing computational thinking in compulsory education: Implications for policy and practice. European Commission.
- Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016b). Exploring the field of computational thinking as a 21st century skill (pp. 4725-4733). In Proceedings of the EDULEARN16, Barcelona, España. https://doi.org/10.21125/edulearn.2016.2136
- Bonney, E., Jelsma, L. D., Ferguson, G. D., & Smits-Engelsman, B. (2017). Learning better by repetition or variation? Is transfer at odds with task specific training? Plos One, 12(3), e0174214. https://doi.org/10.1371/journal.pone.0174214
- Cárdenas Peralta, M. C. (2018). Pensamiento computacional: Educación básica. Marco referencial (@prende 2.0) [Computational thinking: Basic education. Referential framework (@prende 2.0)]. Gobierno de México. https://bit.ly/cardenasFramework
- Carretero Gómez, S., Vuorikari, R., & Punie, Y. (2017). DigComp 2.1: The digital competence framework for citizens with eight proficiency levels and examples of use. EUR scientific and technical research reports. Publications Office of the European Union.
- Chen, S., & Zhang, C. (2021). What happens to a black sheep? Exploring how multilevel leader-member exchange differentiation shapes the organizational altruism behaviors of low leader-member exchange minority. Group & Organization Management, 46(6), 1073-1105. https://doi.org/10.1177/1059601121998584
- Cruz Castro, L. M., Magana, A. J., Douglas, K. A., & Bouti, M. (2021). Analyzing students’ computational thinking practices in a first-year engineering course. IEEE Access, 9, 33041-33050. https://doi.org/10.1109/ACCESS.2021.3061277
- CSTA & ISTE. (2011). Operational definition of computational thinking for K-12 education. https://www.csteachers.org/page/about-csta-s-k-12-nbsp-standards
- Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020) Implications for educational practice of the science of learning and development. Applied Developmental Science, 24(2), 97-140. https://doi.org/10.1080/10888669.2018.1537791
- Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60, 33-39. https://doi.org/10.1145/2998438
- Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press. https://doi.org/10.7551/mitpress/11740.001.0001
- Egan, J. P. (2020). Beyond the afterglow: Effective transfer of learning through instructional design. Teaching and Learning Inquiry, 8(1), 173-186. https://doi.org/10.20343/teachlearninqu.8.1.12
- Ellington, J. E., Surface, E. A., Blume, B. D., & Wilson, M. A. (2015). Foreign language training transfer: Individual and contextual predictors of skill maintenance and generalization. Military Psychology, 27(1), 36-51. https://doi.org/10.1037/mil0000064
- Fundación Chile [Chile Foundation]. (2017). Pensamiento computacional [Computational thinking]. Gobierno de Chile, Ministerio de Educación [Ministry of Education]. https://fch.cl/noticia/25171
- Gordon, B., & Doyle, S. (2015). Teaching personal and social responsibility and transfer of learning: Opportunities and challenges for teachers and coaches. Journal of Teaching in Physical Education, 34, 152-161. https://doi.org/10.1123/jtpe.2013-0184
- Green, C., Molloy, O., & Duggan, J. (2022). An empirical study of the impact of systems thinking and simulation on sustainability education. Sustainability, 14(394), 1-30. https://doi.org/10.3390/su14010394
- Gysin, D., & Brovelli, D. (2021). Use of knowledge pieces and context features during the transfer process in physics tasks. International Journal of Science Education, 43(13), 2108-2126. https://doi.org/10.1080/09500693.2021.1952334
- ISTE. (2016). Standards for students. https://www.iste.org/standards
- ISTE. (2018). Computational thinking meets student learning: Extending the ISTE standards. International Society for Technology in Education. https://www.iste.org/standards/foreducators
- Jacob, S. R., & Warschauer, M. (2018). Computational thinking literacy. Journal of Computer Science Integration, 1(1), 1-25. https://doi.org/10.26716/jcsi.2018.01.1.1
- Kassab, K. (2021). An investigation of transfer of learning in an English-for-specific-academic writing course: Teaching for transfer. International Journal of Linguistics, Literature and Translation, 4(2), 172-184. https://doi.org/10.32996/ijllt
- Kluzer, S., & Pujol Priego, L. (2018). DigComp into action–get inspired, make it happen. In S. Carretero Gomez, Y. Punie, R. Vuorikari, M. Cabrera Giraldez, & W. O’Keefe (Eds.), JRC Science for Policy Report, EUR 29115 EN. Office of the European Union, Luxembourg. https://doi.org/10.2760/112945
- Law, N., Woo, D., De la Torre, J., & Wong, G. (2018). A global framework of reference on digital literacy skills for indicator 4.4.2. http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
- Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: Integrating computational thinking in K-12 science, technology, engineering, and mathematics education. Journal of Science Education and Technology, 29, 1-8. https://doi.org/10.1007/s10956-019-09803-w
- Li, Y., Schoenfeld, A. H., DiSessa, A. A., Graesser, A. C., Benson, L.C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3, 1-18. https://doi.org/10.1007/s41979-020-00030-2
- Lodi, M. (2020). Introducing computational thinking in K-12 education: Historical, epistemological, pedagogical, cognitive, and affective aspects. https://hal.inria.fr/tel-02981951/document
- Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012
- Macagno, F., & Apanta, C. R. (2019). The dimensions of argumentative texts and their assessment. Studia Paedagogica [Studies in Pedagogy], 24(4), 11-44. https://doi.org/10.5817/SP2019-4-1
- National Research Council (2010). Preparing teachers: Building evidence for sound policy. The National Academies Press.
- National Science Foundation (NSF). (2019). TEM + computing K-12 education (STEM+C). https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505006
- Ololube, N.P., Ajuru, I., James, P., & Makewa, L.N. (2015). Handbook of research on enhancing teacher education with advanced instructional technologies. Information Science Reference. https://doi.org/10.4018/978-1-4666-8162-0
- Ornelas-Gutiérrez, D., Cordero Arroyo, G., & Cano García, E. (2016). La transferencia de la formación del profesorado universitario: Aportaciones de la investigación reciente [The transfer of university teacher training: Contributions of recent research]. Perfiles Educativos [Educational Profiles], 38(154), 57-75. https://doi.org/10.22201/iisue.2448167e.154.57662
- Peng, M. Y.-P., Feng, Y., Zhao, X., & Chong, W. (2021). Use of knowledge transfer theory to improve learning outcomes of cognitive and non-cognitive skills of university students: Evidence from Taiwan. Frontiers in Psychology, 12, 1-12. https://doi.org/10.3389/fpsyg.2021.583722
- Polanco Padrón, N., Ferrer Planchart, S., & Fernández Reina, M. (2021). Aproximación a una definición de pensamiento computacional [Approach to a definition of computational thinking]. Revista Iberoamericana de Educación a Distancia [Ibero-American Journal of Distance Education], 24(1), 55-76.https://doi.org/10.5944/ried.24.1.27419
- Polizzi, G. (2020). Digital literacy and the national curriculum for England: Learning from how the experts engage with and evaluate online content. Computer & Education, 152, 1-13. https://doi.org/10.1016/j.compedu.2020.103859
- Rastle, K., Lally, C., Davis, M. H., & Taylor, J. S. H. (2021). The dramatic impact of explicit instruction on learning to read in a new writing system. Psychological Science, 32(4), 471-484. https://doi.org/10.1177/0956797620968790
- Ríos Félix, J. M., Zatarin Cabada, R., Barrón Estrada, M. L., & Favela Vera, J. (2020). An intelligent learning environment for computational thinking. Computación y Sistemas [Computing and Systems], 24(3), 1199-1210. https://doi.org/10.13053/cys-24-3-3480
- Román-González, M. (2016). Test de pensamiento computacional: Principios de diseño, validación de contenido y análisis de ítems [Computational thinking test: Design principles, content validation, and item analysis]. In M. A. Murga Menoya (Ed.), Perspectivas y avances de la investigación [Research prospects and advances] (pp. 279-302). UNED.
- Römgens, I., Scoupeb, R., & Beausaert, S. (2020). Unraveling the concept of employability, bringing together research on employability in higher education and the workplace. Studies in Higher Education, 45(12), 2588-2603. https://doi.org/10.1080/03075079.2019.1623770
- Roncoroni Osio, U., Lavín, E., & Bailón Maxi, J. (2020). Computational thinking: Digital literacy without computers. Icono 14 [Icon 14], 18(2), 379-405. https://doi.org/10.7195/ri14.v18i2.1570
- Sahaked, H., & Schechter, C. (2016). Source of systems thinking in school leadership. Journal of School Leadership, 26, 468-494. https://doi.org/10.1177/105268461602600304
- Saks, K., Ilves, H., & Noppel, A. (2021). The impact of procedural knowledge on the formation of declarative knowledge: How accomplishing activities designed for developing learning skills impacts teachers’ knowledge of learning skills. Education Sciences, 11(598), 1-15. https://doi.org/10.3390/educsci11100598
- Salehi, S., Wang, K. D., Toorawa, R., & Wieman, C. (2020). Can majoring in computer science improve general problem-solving skills? In Annual Conference on Innovation and Technology in Computer Science Education (pp. 156-161). https://doi.org/10.1145/3328778.3366808
- Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and how? Journal of Educational Computing Research, 3(2), 149-169. https://doi.org/10.2190/6F4Q-7861-QWA5-8PL1
- Sánchez-Vera, M. M. (2019). El pensamiento computacional en contextos educativos: Una aproximación desde la tecnología educativa [Computational thinking in educational contexts: An approach from educational technology]. Research in Education and Learning Innovation Archives, 23, 24-39. https://doi.org./10.7203/realia.23.15635
- Scherer, R. (2016). Learning from the past—The need for empirical evidence on the transfer effects of computer programming skills. Frontiers in Psychology, 7, 1-4. https://doi.org/10.3389/fpsyg.2016.01390
- Scherer, R., Siddiq, F., & Sánchez-Viveros, B. (2019). The cognitive benefits of learning computer programming: A meta-analysis of transfer effects. Journal of Educational Psychology, 111(5), 764-792. https://doi.org/10.1037/edu0000314
- Seufert, S., Guggemos, J., & Sailes, M. (2021). Technology-related knowledge, skills, and attitudes of pre- and in-service teachers: The current situation and emerging trends. Computers in Human Behavior, 115, 1-11. https://doi.org/10.1016/j.chb.2020.106552
- Shafie, S., Majid, F. A., Damio, S. M., & Hoon, T. S. (2020). Evaluation on the face and content validity of a soft skills transfer of training instrument. International Journal of Academic Research in Business and Social Sciences, 10(10), 1054-1065. https://doi.org/10.6007/IJARBSS/v10-i10/8267
- Shin, M., & Bolkan, S. (2021) Intellectually stimulating students’ intrinsic motivation: The mediating influence of student engagement, self-efficacy, and student academic support. Communication Education, 70(2), 146-164. https://doi.org/10.1080/03634523.2020.1828959
- Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142158. https://doi.org/10.1016/j.edurev.2017.09.003
- Solaz-Portolés, J. J., & Sanjosé, V. (2008). Types of knowledge and their relations to problem solving in science: Directions for practice. Educational Sciences Journal, 6, 105-112. http://bit.ly/TypesofKnowledge
- Sonhaji, I., Wijayati, D. T., Soedjarwo, S., Supardam, D., Setiyo, S., & Muharlisiani, S. T. (2020). Factors analysis that affecting “knowledge sharing” in t-vet instructors at Aviation Polytechnic of Surabaya. Talent Development & Excellence, 12(1), 5317-5328.
- Sotiriou, S. A., Lazourdis, A., & Bogner, F. X. (2020). Inquiry-based learning and e-learning: How to serve high and low achievers. Smart Learning Environments, 7(29), 1-15. https://doi.org/10.1186/s40561-020-00130-x
- Tarn, D., & Yen, D. (2020). Task characteristics and knowledge management performance: Model development and scale construction. Knowledge Management Research & Practice. https://doi.org/10.1080/14778238.2020.1785346
- Valverde-Berrocoso, J., Fernández-Sánchez, M. R., & Garrido-Arroyo, M. C. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje [Computational thinking and new learning ecologies]. Revista de Educación a Distancia [Distance Education Magazine], 46(3). https://doi.org/10.6018/red/46/3
- van Peppen, L. M., Verkoeijen, P. P. J. L., Heijltjes, A. E. G., Janssen, E. M., & van Gog, T. (2021). Enhancing students’ critical thinking skills: Is comparing correct and erroneous examples beneficial? Instructional Science (preprint). https://doi.org/10.1007/s11251-021-09559-0
- Vidal, P., De Moura, J., Novo, J., & Ortega M. (2021). Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19. Expert Systems with Applications, 173, 114677. https://doi.org/10.1016/j.eswa.2021.114677
- Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20, 715-728. https://doi.org/10.1007/s10639-015-9412-6
- Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5
- Wenzelburger, E. (2020). La transferencia en el aprendizaje [Transfer in learning]. http://publicaciones.anuies.mx/acervo/revsup/res061/art4.htm
- When, U., & Montalvo, C. (2018). Knowledge transfer dynamics and innovation: Behaviour, interactions and aggregated outcomes. Journal of Cleaner Production, 171, S56-S68. https://doi.org/10.1016/j.jclepro.2016.09.198
- Wing, J. M. (2011). Computational thinking. In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2011) (pp. 33-35). IEEE. https://doi.org/10.1109/VLHCC.2011.6070404
- Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital [Computational thinking: A new digital literacy]. Revista de Educación a Distancia [Distance Education Magazine], 46, 1-47. https://doi.org/10.6018/red/45/4
- Zohar, A., & Barzilai, S. (2015). Metacognition and teaching higher order thinking (HOT) in science education: Students’ thinking, teachers’ knowledge, and instructional practices. In R. Wegerif, L. Li, & J. Kaufman (Eds.), Routledge international handbook of research on teaching thinking (pp. 229-242). Routledge.
- Zouhri, B., & Rateau, P. (2015). Social representation and social identity in the black sheep effect. European Journal of Social Psychology, 45, 669-677. https://doi.org/10.1002/ejsp.2138